The mechanism powering core-collapse supernovae remains uncertain. I will discuss aspects of the critical condition for explosion, focusing on the model problem of spherical accretion onto a standing accretion shock. My recent work explores the importance of turbulence in setting the explosion condition and in explaining the qualitatively different outcomes between one-dimensional and multi-dimensional models. I will then transition to a discussion of the first few seconds after explosion, …

The mechanism powering core-collapse supernovae remains uncertain. I will discuss aspects of the critical condition for explosion, focusing on the model problem of spherical accretion onto a standing accretion shock. My recent work explores the importance of turbulence in setting the explosion condition and in explaining the qualitatively different outcomes between one-dimensional and multi-dimensional models. I will then transition to a discussion of the first few seconds after explosion, …

The mechanism powering core-collapse supernovae remains uncertain. I will discuss aspects of the critical condition for explosion, focusing on the model problem of spherical accretion onto a standing accretion shock. My recent work explores the importance of turbulence in setting the explosion condition and in explaining the qualitatively different outcomes between one-dimensional and multi-dimensional models. I will then transition to a discussion of the first few seconds after explosion, …

In the model problem of steady spherically-symmetric pressure-less free-fall onto a standing shockwave around an accreting central mass, the “antesonic” condition limits the regime of stable accretion to $c^2_T/v^2_{\rm esc}\leq 3/16$, where $c_T$ is the isothermal sound speed in the subsonic post-shock flow, and $v_{\rm esc}$ is the escape velocity at the shock radius. Above this limit, it is impossible to simultaneously satisfy the time-steady Euler equation and the strong shock-jump …

While the neutrino mechanism is understood to be the driving force behind core-collapse supernovae (CCSNe) explosions, the physics of this mechanism in multidimensional simulations are not fully understood. We extend the “antesonic condition” formulated by Pejcha & Thompson (2012) to time-dependent, polytropic models. We find that high spatial resolution is necessary for accurate determination of simulation properties near the critical curve, and low resolution simulations …